Indian Statistical Institute, Bangalore Centre

B.Math (Hons.) II Year, First Semester Mid-Sem Examination Analysis III September 10, 2012 Instructor: T.S.S.R.K. Rao Total Marks : 5x8=40

Time: 3 Hours

Give complete and detailed answers, do not just quote a result from which a solution may follow.

- 1. Show from the first principles, $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ defined by $f(x,y) = x^2 + y^2$ is integrable.
- 2. Let I be the unit cube in \mathbb{R}^3 . Let $f: I \to \mathbb{R}$ be a bounded function such that f(x, y, z) = 0 for $x, y, z \in (0, 1)$. Show that f is integrable and $I^{\iiint f=0}$.
- 3. Let $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. Let R be any rectangle containing D. Let $f : R \to \mathbb{R}$ be defined by

$$f(x,y) = 1 \text{ if } x^2 + y^2 \le 1$$

= 0 if $x^2 + y^2 > 1$.

For any partition

$$P = \left\{ \begin{array}{c} (x_i, y_j) : 0 \le i \le n \\ 0 \le j \le k \end{array} \right\}$$

of the rectangle, show that

$$U(P, f) - L(P, f) = \sum_{(i,j) \in S} (x_i - x_{i-1})(y_j - y_{j-1})$$

where $S = \{(i, j) : [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ has a non-empty intersection with D as well as with $R \setminus D$.

- 4. Let $D = \left\{ (x, y) \in \mathbb{R}^2 : -2 \le x \le 2 \text{ and } 0 \le y \le \sqrt{\frac{(4-x^2)}{2}} \right\}$. Let $f : D \to \mathbb{R}$ be defined by f(x, y) = y. Show that f is integrable and compute $\iint_D f$.
- 5. Define the notion of a set of content zero in \mathbb{R}^3 . Show that $D = \{(x, y, \sin(x+y)) : 0 \le x, y \le \pi\}$ is a set of content zero.